Journal of Organometallic Chemistry, 125 (1977) 209–214 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

COMPLEXES OF BIDENTATE GROUP VB CHELATES

XX *. MASS SPECTRAL STUDIES ON SOME DIPHOSPHINE AND DISTIBINE LIGANDS WITH BACKBONES OF VARYING LENGTH

WILLIAM LEVASON, CHARLES A. MCAULIFFE, IAN E. NIVEN, RICHARD V. PARISH and P. DAVID RANDALL

Department of Chemistry, University of Manchester Institute of Science and Technology, Manchester M60 1QD (Great Britain) (Received July 9th, 1976)

(Received July 9th, 1976)

Summary

The mass spectral fragmentation patterns of the diphosphines $Ph_2P(CH_2)_nPPh_2$ (n = 6, 8, 10, 12) and the distibutes $Me_2Sb(CH_2)_nSbMe_2$ (n = 6, 10) are reported and compared with those of $Me_2As(CH_2)_{12}AsMe_2$ and the analogous ligands with C_2 and C_3 backbones.

Introduction

Mass spectra of several types of bidentate Group VB donor ligands have been reported over the past few years, including $Ph_2E(CH_2)_nEPh_2$ (E = P, As, [2,3] Sb [4]), cis- and trans-Ph_2ECHCHEPh_2 (E = P, As) [3], o-C₆H₄(EPh_2)(E'Ph_2) (E, E' = P, As, Sb) [4]. Not surprisingly the type of ligand backbone (alkane, alkene or o-phenylene) has a profound effect upon the mode(s) of fragmentation of the ligands. Recently we reported [1] the mass spectrum of the long chain diarsine, Me₂As(CH₂)₁₂AsMe₂, which exhibited an unexpected tendency to cyclise and lose C₂H₄ fragments progressively. We are currently [5,6] examining the coordination chemistry of a range of α, ω -alkane diphosphines, diarsines and distibines with medium (n = 4-8) and long (n = 10-14) backbones in order to try to elucidate the varying importance of backbone length and donors upon their ability to function as trans chelating or bridging ligands, i.e. to see if the reaction seen [1] in the mass spectral beam

$$(CH_3)_2As(CH_2)_{12}As(CH_3)_2 \xrightarrow{-H} CH_3As(CH_2)_{12}As(CH_3)_2 \xrightarrow{(CH_2)_{12}} As(CH_3)_2 \xrightarrow{$$

gave us any information about the tendency for the coordination reaction

$$(CH_3)_2As(CH_2)_{12}As(CH_3)_2 \stackrel{M}{\rightarrow} (CH_3)_2As - M - As(CH_3)_2$$

$$(CH_2)_{12}$$

Thus, the mass spectra of several ligands have been examined to see if the variation in backbone length exerted any marked effect upon the fragmentation modes.

Experimental

Mass spectra were recorded as described previously [4]. The synthesis of the ligands will be described elsewhere [6].

TABLE 1

FRAGMENTATION PATTERNS OF COMPOUNDS I-IV

Ph ₂ P(CH ₂) ₁₂ PPh ₂			Ph ₂ P(CH ₂) ₁₀ PPh ₂				
Mass	Rel. int.	Fragment	Mass	Rel. int.	Fragment		
538	32.1	C36H44P2	510	11.4	C34H40P2		
537	7.4	C36H43P2	509	3.9	C34H39P2		
509	1.5	C34H39P2	467	1.7			
495	9.0		433	7.6	C28H35P2		
481	2.4	C32H35P2	370	21.6	C24H20P2		
461	14.4	C30H39P2	325	65.7	C ₂₂ H ₃₀ P		
370	24.0	C24H20P2	311	9.9	C21H28P		
353	65.6	C24H34P	297	7.1	C20H26P		
339	10.7	C23H32P	283	8.2	C19H24P		
325	8.9	C22H30P	269	13.7	C18H22P		
311	7.0	C21H28P	255	25.4	C17H20P		
297	4.6	C20H26P	241	16.2	C16H18P		
283	8.5	C19H24P	213	18.2	C14H14P		
269	26.5	C18H22P	200	18.0	C13H13P		
262	3.4	CIRHISP	199	84.0	C13H12P		
255	22.5	CizHonP	186	42.3	CizHiP		
241	15.6	C16H18P	185	40.8	C12H10P		
227	1.8	C15H16P	183	75.0	C12H8P	÷	
213	20.5	C14H14P	154	2.4	CizHin		
200	41.1	CIACIAP	152	8.3	C ₁₂ Hg		
199	100	Ci 3Hi 2P	121	22.8	C7H6P		
186	50.3	Ci2H11P	109	37.9	CAHAP	÷	
185	40.9	CizHinP	108	100	CAHAP		
183	80.7	C12HeP	107	26.4	CAHAP		
154	9.8	CiaHio	91	50.7	C _{7H7}		
152	14.4	CioHe	78	26.0	CAHA		
121	13.3	C7H6P	77	28.1	CAHS		
109	36.5	CeHeP			-03		
108	93.3	CAHAP	111 C	•			
107	27.1	CeHAP		• • • •			
91	29.4	C-H-					
78	65.8	CeHe		1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -			
77	96.9	C ₆ H ₅			ار این می وارد. مرکز می این می ای مرکز می می می این می		

210

Results and discussion

(a) The diphosphines, $Ph_2P(CH_2)_nPPh_2$ (n = 6, 8, 10, 12)

The prominent ions in the mass spectra of 1,12-bis(diphenylphosphino)dodecane, (n = 12), (I), 1,10-bis(diphenylphosphino)decane, (n = 10), (II), 1,8bis(diphenylphosphino)octane, (n = 8), (III), and 1,6-bis(diphenylphosphino)hexane, (n = 6), (IV), are listed in Table 1. All four ligands exhibit parent and P-1 ions, although for IV the ions are of very low intensity. The ion Ph₂PPPh₂⁺, formed by elimination of the backbone, is an important one in the spectra of I, II and III, but occurs with only very low intensity for IV, perhaps a reflection of the increasing strain involved in ring closure which must precede elimination. Phenyl migration reactions are unimportant. Fragments containing two phosphorus atoms are rather rare, in marked contrast to the case for the *o*-phenylene analogue [4]; only one phenyl group can be lost, $(P-Ph)^+$, before $--(CH_2)_n - P$ cleavage occurs; there is no evidence for $P - 2Ph^+$ ions.

Loss of PPh₂ from the parent ion is a prominent decomposition route, the Ph₂P(CH₂)_n^{*} (n = 12, 10, 8, 6 for I–IV, respectively) ions are all of high intensity, and for III this ion is the base peak. All the succeeding Ph₂P(CH₂)_{(n-1), (n-2)} down to Ph₂P^{*} (m/e 185) are present. Loss of successive methylene groups is most unlikely [2]; these ions no doubt result from progressive ethylene (C₂H₄) loss from Ph₂P(CH₂)_n^{*} and Ph₂P(CH₂)_{n-1} resulting in two overlapping series (Scheme 1 shows the proposed fragmentation for I). The Ph₂P(CH₂)_n^{*} - 1 ion

Mass 482 481 439 405 370 297 10 283 269 255 1 241	Rel. int. 7.5 3.9 1.2 7.8 6.8 00 9.7 9.0 12.5	Fragment C 32H 36P2 C 32H 35P2 C 26H 31P2 C 24H 20P2 C 20H 26P C 19H 24P C 19H 24P	Mass 454 453 377 370 269 262	Rel. int. 0.6 0.3 1.1 0.8 96.9	Fragment C 30H 32P 2 C 30H 31P 2 C 24H 27P 2 C 24H 27P 2 C 24H 20P 2 C 18H 22P
482 481 439 405 370 297 10 283 269 255 1 241	7.5 3.9 1.2 7.8 6.8 00 9.7 9.0 12.5	C ₃₂ H ₃₆ P ₂ C ₃₂ H ₃₅ P ₂ C ₂₆ H ₃₁ P ₂ C ₂₄ H ₂₀ P ₂ C ₂₀ H ₂₆ P C ₁₉ H ₂₄ P C ₁₉ H ₂₄ P	454 453 377 370 269 262	0.6 0.3 1.1 0.8 96.9	C 30H 32P 2 C 30H 31P 2 C 24H 27P 2 C 24H 27P 2 C 24H 20P 2 C 18H 22P
481 439 405 370 297 10 283 269 255 1 241	3.9 1.2 7.8 6.8 90 9.7 9.0 12.5	C_{32H}_{35P2} C_{26H}_{31P2} C_{24H}_{20P2} C_{20H}_{26P} C_{19H}_{24P} C_{20H}_{26P}	453 377 370 269 262	0.3 1.1 0.8 96.9	$C_{30H 31}P_2C_{24H 27}P_2C_{24H 20}P_2C_{18H 22}P$
439 405 370 297 10 283 269 255 2 241 2	1.2 7.8 6.8 90 9.7 9.0 12.5	$C_{26}H_{31}P_{2}$ $C_{24}H_{20}P_{2}$ $C_{20}H_{26}P$ $C_{19}H_{24}P$ $C_{20}H_{26}P$	377 370 269 262	1.1 0.8 96.9	C ₂₄ H ₂₇ P ₂ C ₂₄ H ₂₀ P ₂ C ₁₈ H ₂₂ P
405 370 297 10 283 269 255 1 241 2	7.8 6.8 00 9.7 9.0 12.5	C ₂₆ H ₃₁ P ₂ C ₂₄ H ₂₀ P ₂ C ₂₀ H ₂₆ P C ₁₉ H ₂₄ P C ₁₉ H ₂₄ P	370 269 262	0.8 96.9	C ₂₄ H ₂₀ P ₂ C ₁₈ H ₂₂ P
370 297 10 283 269 255 1 241 2	6.8 00 9.7 9.0 12.5	C24H20P2 C20H26P C19H24P C19H24P	269 262	96.9	C ₁₈ H ₂₂ P
297 10 283 269 255 1 241 1	00 9.7 9.0 12.5	$C_{20}H_{26}P$ $C_{19}H_{24}P$ $C_{12}H_{24}P$	262	4.9	
283 269 255 1 241 1	9.7 9.0 12.5	C ₁₉ H ₂₄ P	OFF	4.0	C18H15P
269 255 2 241 2	9.0 12.5	CoHooP	255	4.6	C ₁₇ H ₂₀ P
255 1 241 1	12.5	VIX++22*	241	3.2	C16H18P
241 2		Ci 7H20P	227	2.8	C1SH16P
	17.1	C16H18P	213	3.3	C14H14P
227	1.0	CISHI6P	200	7.4	C13H13P
213	12.1	C14H14P	199	24.7	C ₁₃ H ₁₂ P
200	15.8	C13H13P	186	35.5	C12H11P
199 (64.2	C13H12P	185	15.4	C12H10P
186 2	24.8	C12H11P	183	64.1	C12H8P
185 1	12.0	C12H10P	154	6.3	C12H10
183 8	84.2	C12H8P	152	14.2	C12H8
154	1.7	C12H10	121	11.2	C7H6P
152	8.3	C12H8	109	24.0	C ₆ H ₆ P
121	22.9	C7H6P	108	100	C6H5P
109	32.4	C6H6P	107	45.5	C6H4P
108	77.2	CAHSP	91	33.9	C7H7
107	24.6	CAHAP	78	42.3	C6H6
91	30.9	C-H-	77	64.3	C6H5
78	14.0	CAHA			
.97	16.0	CAHA			1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1

211

presumably arises by loss of Ph_2PCH_2 from the parent. Only ligand I shows any evidence for a third series of progressive C_2H_4 loss beginning at $P-1^*$, presumably the cyclic ion V. The ions corresponding to Ph_2P^* and PhP^* are of high intensity, as they usually are in the spectra of phenylphosphines. The spectra also contain a long series of ions at low m/e (not shown) corresponding to the normal fragments derived from the alkane backbone.

SCHEME 2

Fragmentation pattern of Me₂Sb(CH₂)₁₀SbMe₂

(b) The distibines, $Me_2Sb(CH_2)_nSbMe_2$ (n = 6, 10)

The spectra of 1,10-bis(dimethylstibino)decane, (VI), and 1,6-bis(dimethylstibino)hexane, (VII), are shown in Table 2. These spectra illustrate the weakness of the C-Sb bond. In both cases, based upon ¹²¹Sb only, the base peaks are hydrocarbon fragments (although for VI, if ¹²³Sb is also considered, ¹²¹Sb + ¹²³Sb yields a base peak of Me₂Sb⁺ ~ 105% of the hydrocarbon base). There are extensive series of hydrocarbon fragments at low m/e (not shown). The major antimony peaks are, as expected, Me₂Sb⁺, C₂H₄Sb⁺ and MeSb⁺, characteristic of methylstibines [1]. Both VI and VII resemble Me₂Sb(CH₂)₃SbMe₂ [1] in that the reasonably intense peak at highest m/e observed corresponds to $P - Me^+$ rather than P^+ , although VI does, in fact, exhibit a very weak P^+ (I = 0.9%). The spectrum of VI again shows two series of C₂H₄ loss, beginning at C₁₁H₂₂Sb⁺ (m/e = 275) and C₁₀H₂₀Sb (m/e = 261) which may result by loss of Me₂SbH and Me₃Sb from P-Me (Scheme 2). A comparison with Me₂As(CH₂)₁₂AsMe₂ [1] shows that the mass spectrum of VI differs in lacking series containing two

FRAGMENTATION PATTERNS OF COMPOUNDS VI AND VII

Me ₂ Sb(CH ₂) ₆ SbMe			Me2Sb(CH2)10SbMe2		
Mass	Rel. int.	Fragment	Mass	Rel. int.	Fragment
371	19.2	C ₉ H ₂₁ Sb ₂	442	0.9	C14H32Sb2
356	0.1	C8H18Sb2	426	22.5	C13H28Sb2
302	3.2	C ₄ H ₁₂ Sb ₂	398	1.3	C11H24Sb2
287	2.4	C ₃ H ₉ Sb ₂	362	3.3	C4H12Sb2
257	1.8	CH ₃ Sb ₂	291	2.3	C12H26Sb
235	3.4	C8H18Sb	290	5.7	C12H25Sb
234	2.2	C ₈ H ₁₇ Sb	276	2.7	C11H23Sb
220	3.7	C7H15Sb	275	14.1	C ₁₁ H ₂₂ Sb
219	13.2	C7H14Sb	261	1.9	C10H20Sb
207	3.0	C ₆ H ₁₄ Sb	247	0.4	C ₉ H ₁₈ Sb
205	8.8	C ₆ H ₁₂ Sb	233	0.4	C ₈ H ₁₆ Sb
191	5.1	C5H10Sb	219	2.6	C7H14Sb
177	11.0	C4H8Sb	205	1.3	C ₆ H ₁₂ Sb
166	6.2	C3H9Sb	191	1.6	C5H10Sb
163	3.0	С ₃ н ₆ Sb	177	1.7	C4H8Sb
151	80.0	C2H6Sb	166	9.8	C3H9Sb
149	25.9	C ₂ H ₄ Sb	163	0.9	C3H6Sb
136	46.9	CH3SP	151	61.9	C ₂ H ₆ Sb
135	9.5	CH ₂ Sb	149	16.8	C ₂ H ₄ Sb
122	7.3	SbH	136	23.0	CH ₃ Sb
121	23.3	Sb	135	9.0	CH ₂ Sb
81	100	C ₆ H ₉	122	3.3	รธศ์
			121	11.3	Sb
			55	100	C4H7

Group VB atoms, again a manifestation of the weakness of the C-Sb bond. Ligand VII shows similar series of C_2H_4 loss from the monoantimony ions $C_6H_{12}Sb^+$ and $C_7H_{14}Sb^+$.

A comparison of the spectra of I-VII and that of Me₂As(CH₂)₁₂AsMe₂ reveals that progressive loss of C_2H_4 from the backbone is a characteristic of this type of ligand, but the effect on the spectra of varying backbone length (at least over the $(CH_2)_{12}$ to $(CH_2)_6$ range) is considerably less than that produced by changes in the Group VB element or the terminal substituents.

Acknowledgment

We are grateful to the Science Research Council for the award of Research Studentships to IEN and PDR.

References

		أوجر ومرارك أخرجه فرار	이 지수 있었는 것 같아?	이 방법이 주요 승규는 가격 관련하는 것
1	w. Leveson, C.A. McAulliffe, S.G.	Murray and R.D. Sedgwick	. J. Organometal. Che	.m., 105 (1976) 195.
2	R. Colton and Q.N. Porter, Aust.	J. Chem., 21 (1968) 2215.	·哈克·哈克·昆仑在外。	이 같은 것은 것을 알았다.
3	K.K. Chow and C.A. McAuliffe, J.	Organometal, Chem., 59 (1973) 247.	나는 것 같은 것은 사람이 가지 않는다. - 사람들이 같은

⁴ W. Levason, C.A. McAuliffe and R.D. Sedgwick, J. Organometal. Chem., 84 (1975) 239.

⁵ W. Levason, C.A. McAuliffe and S.G. Murray; J. Organometal. Chem., 110 (1976) C25. 6 C.A. McAuliffe, I.E. Niven, R.V. Parish and P.D. Randall, to be published.